Notes

TA	BLE	III

		C,	%	H,	%	Ι,	%	N,	%	S,	%	Recrystn	$\int U V da$ $\lambda_{max}^{0.1 N H}$	
Compd	Formula	Calcd	Found	Calcd	Found	Caled	Found	Calcd	Found	Caled	Found	solvent	mμ (ε)
IUdR 3'-sulfate	$C_9H_{10}IKN_2O_8S^a$	22.89	22.69	2.13	2.35	26.87	26.63	5.93	5.68	6.79	7.00	$H_2O-EtOH$	286 (68	830)
IUdR 5'-sulfate	$C_9H_{10}IKN_2O_8S$	22.89	22.85	2.13	2,30	26.87	27.18	5.93	6.15	6.79	6.84	H ₂ O-EtOH	288 (70	015)
l UdR disulfate	$C_9H_9IK_2N_2O_{11}S_2$	18.31	18.02	1.54	1.88	21.49	20.96	4.74	4.70	10.86	10.97	H ₂ O-EtOH	288 (70	019)
ICdR 3'-sulfate	$(C_9H_{11}IN_3O_7S)_2Ba^a$	21.58	21.73	2.21	2.49	25.34	25.21	8.40	8.18	6.40	6.20	$H_{2}O$	308 (8)	130)
ICdR 5'-sulfate	$(C_9H_{11}IN_3O_7S)_2Ba$	21.58	21.34	2.21	2.37	25.34	25.08	8.40	8.18	6.40	6.29	H₂O−EtOH	308 (78	890)
ICdR disulfate	$C_9H_{10}IK_2N_3O_{10}S_2$	18.34	18.49	1.70	2.12	21.53	20.85	7.13	7.05	10.88	10,57	H_2O	308 (8	570)
^a The avalytical sample was prepared from the 3'-sulfate obtained <i>via</i> the 5'-trityl intermediate.														

The analytical sample was prepared from the 3'-sulfate obtained via the 5'-trityl intermediate.

Caled for $C_{28}H_{25}IN_{3}O_{4}$: C, 56.47; H, 4.40; I, 21.35; Anal. Found: C, 56.54; H, 4.49; I, 21.20; N, 6.89. N, 7.06.

5-Iododeoxyuridine 3'-Sulfate.-A mixture of 5'-trityl-5iododeoxyuridine (1.2 g, 2 mmoles) and pyridine-sulfur trioxide (0.476 g, 2.8 mmoles) in dry pyridine (8 ml) was stirred at 28° for 48 hr. The reaction was terminated with H_2O (40 ml) and allowed to stand overnight at 0° . The mixture, after concentration to dryness *in vacuo* at 40° , was dissolved in methanol (20 ml) and again concentrated to dryness in vacuo at 40°; this operation was repeated several times. The powdery residue was dissolved in 80% aqueous acetic acid (30 ml) and the solution was stirred for 2 hr at 45° . The solvent was removed in vacuo at 40° and the residue was taken up in H_2O (30 ml). 5-Iododeoxyuridine 3'-sulfate (1.6 mmoles, 78%), separated by paper chromatography in isobutyric acid-H₂O-concentrated NH₄OH (66:33:1), was converted to the potassium salt via Dowex 50 (K⁺ form). Its infrared spectrum, R_i , and ultraviolet spectra were identical with those of the potassium salt of fraction A (Table I)

5-Iododeoxycytidine 3'-Sulfate.-5'-O-Trityl-5-iododeoxycytidine was treated with PST, according to the procedure for 5-iododeoxyuridine 3'-sulfate, to give 5-iododeoxycytidine 3'sulfate in 82% yield. Its barium salt had the same R_i value, as well as infrared and ultraviolet spectra, as the barium salt of fraction A' (Table I).

3'-O-Acetyl-5-iododeoxyuridine.-To a cooled solution of 5'-O-trityl-5-iododeoxy
uridine (4.8 g, 8 mmoles) in dry pyridine (40 ml) was added acetic anhydride (1.8 ml) at 0° with stirring. The solution, after stirring an additional 24 hr at room temperature, was poured into ice-water (15 ml) and the solvent was removed *in vacuo* at 40°. The residue was dissolved in 80% aqueous acetic acid (100 ml); after stirring at 45° for 54 hr, the solution was stored at 4° for 12 hr and the separated triphenylcarbinol was removed by filtration. The filtrate was concentrated to dryness in vacuo at 40° to yield the crude 3'-O-acetyl derivative (2.5 g), which was washed (CCl₄) and recrystallized from methanol and petroleum ether (bp 30-60°). The analytical sample was recrystallized from ethyl acetate and petroleum ether; mp 196°, $\lambda_{\max}^{95\%} = E_1 M = 283 \text{ m}\mu$ (7600).

Anal. Caled for $C_{11}H_{13}IN_{2}O_{6}$: C, 33.35; H, 3.31; I, 32.03; N, 7.06. Found: C, 33.09; H, 3.52; I, 32.15; N, 7.25.

Potential Carcinostatic Agents. I. **Derivatives and Analogs of** 1-(2-Hydroxyethyl)-3-(4-tolyl)urea

HAROLD G. NELSON, FREDERIC J. SHELTON, AND WILLIAM H. WETZEL

Reichhold Chemicals, Inc., Pacific Northwest Division, P.O. Box 1482, Tacoma, Washington 98401

Received March 27, 1967

During the course of a program for synthesizing a group of substituted ureas designed as potential herbicides to be evaluated in our greenhouse, we also submitted these to the Cancer Chemotherapy National Service Center for antitumor screening. One of these, the title compound, showed some activity against Sarcoma 180 in mice and it was decided to synthesize a number of derivatives and analogs of this compound, not already reported and tested.¹ for similar screening. One of these derivatives, 1-(2-chloroethyl)-1-nitroso-3-(4-tolyl)urea, was particularly active against L1210 lymphoid leukemia in two types of mice. Table I lists these substances and their physical properties. They were made by literature procedures, as outlined for typical cases in the Experimental Section.

Biological Data.—Although several of these compounds passed stage I or stage II in the Lewis lung carcinoma test, they did not have confirmed activity. 1-(2-Hydroxyethyl)-3-(4-tolyl)urea had confirmed activity against Sarcoma 180, but was inactive in the lymphoid leukemia (L1210) test. 1-(2-Hydroxyethyl)-1-nitroso-3-(4-tolyl)urea showed slight activity against L1210 (T/C = 100-125% in the multiple-dose assay). 1-(2-chloroethyl)-1-nitroso-3-(4-tolyl)urea However. had considerable activity (L1210); see Table II.

Experimental Section²

Method A. 1-(2-Hydroxyethyl)-3-(4-tolyl)urea.—A stirred suspension of 2-aminoethanol (6 g, 0.98 mole) in toluene (100 ml) was treated at room temperature with p-tolyl isocyanate (13 g, 0.098 mole). After stirring for 4 hr the product was collected on a filter and washed with toluene and then with ligroin (bp $60-70^{\circ}$).

Method B. 1-(2-Chloroethyl)-3-(4-tolyl)urea.—A stirred solution of p-toluidine (10.5 g, 0.098 mole) in toluene (100 ml) was treated with 2-chloroethyl isocyanate (10 g, 0.098 mole) at room temperature. After stirring for 2 hr the product was collected on a filter and washed with toluene and then ligroin. The product was recrystallized from acetonitrile.

Method C.^{1b} 1-(2-Chloroethyl)-1-nitroso-3-(4-tolyl)urea,stirred solution of 1-(2-chloroethyl)-3-(4-tolyl) urea (7 g, 0.033 mole) in 300 ml of 98% formic acid (5-7°) was treated with dry NaNO₂ (6 g, 0.09 mole) in small portions over a period The solution was stirred for an additional hour of 1.5 hr. (0-5°) and 175 ml of ice water was then added slowly. The mixture was stirred an additional 30 min at 0°. The light yellow crystalline product was collected on a filter, washed with cold water, and dried $(P_2O_{\delta}, under vacuum)$.

Method D. 1-(2-Iodoethyl)-3-(4-tolyl)urea.-1-(2-Chloroethyl)-3-(4-tolyl)urea (6 g, 0.06 mole) was refluxed with anhydrous NaI³ (9 g, 0.06 mole) in 50 ml of dry acetone for 24 hr (CaCl₂ drying tube). The solution was then filtered hot to remove any salts and the filtrate was diluted with 500 ml of cold water. The white precipitate that formed was collected on a filter, washed with water, and dried. The product was recrystallized from acetonitrile.

Method E. 1-(2-Bromoethyl)-3-(4-tolyl)urea,-1-(2-Hydroxyethyl)-3-(4-tolyl)urea (26 g, 0.144 mole) was added slowly with stirring to 40 ml of PBr₃ at room temperature. After the addition, the reaction mixture was heated on a hot-water bath and stirred for 3 hr. During this time, an orange suspension formed.

^{(1) (}a) For example, T. P. Johnston, G. S. McCaleb, and J. A. Montgomery, J. Med. Chem., 6, 669 (1963); (b) T. P. Johnston, G. S. McCaleb, P. S. Opliger, and J. A. Montgomery, ibid., 9, 892 (1966).

⁽²⁾ Melting points were taken on a Fisher-Johns block and are corrected to standards

⁽³⁾ The NaI was heated strongly (\sim 300°) on a hot plate just prior to use.

Notes

TABLE I

N-ARYL-N'-to-substituted-alkyl)/dieas and Their N'-Nitroso Derivatives

Лг	Method of synthesis	Recrystu solvent ^a	Yield,	$M_{10} \approx C$	Formeda		non, S. Format		ogen, % Found	l Iulo Caled	gen, 57. Found		geo, G Fornd
	ay neneoro	aorvent		-					round	Caren	rogna	(ar) a	1 (001111
					1)meas, ArNHO								
p-Tolyl	Α.	.\	80	151-153	Cic1154N2O2		61.78	7.27	7.20				11.53
m-Toly?	.\	N	04	106.5-108.ā	CiellorN 2O2		62.04	7.27	7.28			14.42	14.60
o-Methoxyphenyl	A	A	78	103.5-105	CielliaN ₂ O ₂		37.18	6 71	6.68			13.33	13-18
3,4-Dichbrophenyl	.\	N	80	$136.5 - 138.5^{h}$	CallinClaNaOa		13-47	4-05	4.15	28.46	28.37	11.25	11.42
			· ·	4. L	oso)nrea, ArNI		,						
p-T a ly	С	N	96	75 dec	$C_{10}\Pi_{18}N_{0}O_{1}$	53.80	53.88	5.87	5.85			18.83	18.90
			(2-	Chloroethyl)i	ireas, ArNHCO	NHCE	$_{12}CH_{2}C$	H ₂ CI					
p-Tody1	15	А	85	178t79°	$C_{10}\Pi_{48}C5N_5O$	56.47	56.56	6.18	6.20	16.67	16.66	13.17	13.00
m-Tolyl)5	А	78	123.5 - 125	C1911:3CIN2O	56.47	56.77	6.18	6,24	16.67	16.83	13.17	13.26
o-Methoxyphenyl	13	А	70	118.5 - 120	C161114CIN4O2		52.46	5.73	5.77	15.50	15.55	12.25	12.23
3.4-Diebtoropbenyl	13	А	32	125.5 - 127	C9119ClaN9O	-10, -10	40.41	3.39	3.42	39.75	39.52	10.47	10.96
<i>µ</i> -Bromophenyl	13	Α.	84	181 - 183	$C_{8}11_{P}d4rC1N_{2}O$	38.94	38.66	3 63	3.81	12.77^{e}	12.93^{e}	10.09	19.16
										28.71^{ℓ}	28.91^{f}		
			(2-Ch	loroethylnitro	so)ureas, ArNI	ICON(NO)CH	2CH2CI	l.				
p-Toly)	€'	N	78	88-89.5	Cie1152C5NaO2	49.70	49.48	5.90	4.76	14.67	14.69	17.39	17.23
m-Tolyl	C	N	79	100-100.5	$\rm Coll_{22} ClN_3O_2$	49.70	49.54	5.00	5.31	14.67	14.60	17.39	17.20
e-Methoxyphenyl	С	N	76	75 ~8 0 dec	C101D2CIN8Oa	-16.61	-46.153	4.69	4.73	13.76	13.86	16.31	16.15
3,4-Dicblorophenyl	€'	N	92	109.5110	C#HsClaNaOc	36.45	36-44	2.72	2.86	35.87	35.64	14.17	13.09
p-Bromophenyl	С	N	92	90-90-5	C9H4BrCiNsO2	35,26	35.02	2.96	3.09	$\frac{11.58^{\circ}}{26.07^{\circ}}$	$\frac{11.43}{26.13}$	13.71	131,83
				2-Bromoethy	l)mea, ArNHC	ONHC	H_2CH_2I	31					
p -Tolyl d^{k}	Е	r	37	161-163	CiellisBrNsO		46.66		4.98	31.08	31.33	16,90	10.81
			(2-Br	omoethyhitro	so)mea, ArNH	CON(2	$O(CH_2)$	CH_2Br					
p-Toly!	С	N	69	102-102.5	C1/II:2BrNsO 2	41.98	41.80	4 23	4.32	27 - 93	27.96	14.69	14.60
				(2-Iodoethy)	ljurea, ArNHCO	ONHC	H ₂ CH ₂ I						
p-Toly1	1)	А	31	180182	$C_{10} \Pi_{10} \Pi_{20} \Pi_{20}$		39.78	4.27	4.19			Sc. 24	8.98
			(3- H	vdroxypropyl	nirea, ArNHCC	NHCI	I ₂ CH ₂ C	H ₂ OH					
p-Toly!	Δ	W	59	138-139	CatlineN::O:		63.44		7.71			13.45	13,39
			(2)	Chlannard	urea, ArNHCO	NHCH	LCTLC	1.01					
711 1 1	1.			126,5-127.5	Cn115CIN2O	58.28		6 67	6.76	15.64	15.49	12.36	61.19
p-Tolyl	F	А	35							10.04	10.00	12.00	12.10
			3-Chlor	opropylnitrose))urea, ArNHC			$\Pi_2 C H_2$	CI				
p-Tolyl	С	Ν	98	89.5-00	$C_D H_{10} C I N_0 O_2$	51.67	$51^{-}58^{-}$	5.52	5.54	13.86	13.77	16.44	116.63

^a A, acetonitrile; N, none; T, toluene: W, water. ^b N. E. Good (*Plant Physiol.*, **36**, 788 (1961)) reported mp 137–138°. ^c J. P. Picard and A. F. McKay (*Can. J. Chem.*, **31**, 896 (1953)) and H. Najer and R. Gindicelli (*Bull. Soc. Chim. France*, 1650 (1960)) reported mp 178–179°. ^d F. L. Scott, R. E. Glick, and S. Winstein, *Experientia*, **13**, 183 (1957). ^c Chlorine analysis. ^f Bromine analysis.

TABLE II: In Vivo Testing against L1210 of

CICH	H ₂ CH ₂ (NO)NCONH	H_3
Dose, mg/kg, BDF ₁ mice	Survivors	T /C, %*
200	4/4	<1t)t)
400	4/4	<100
100	4/4	86
50	4/4	197
$\overline{7}$ õ	4/4	118
50	4/4	171
33	4/4	152
22	4/4	161
25	6/6	152
15	6/6	206^{b}
9	6/6	165
5.2	676	169
4	5/6	<100
2	6/6	129
1	6/6	107
0.5	6/6	103
CDF, mice		
25	676	87
15	676	193
9	6/6	189
5.4	6/6	136
" Test/control:	days survived (as per cent).	* Four cures.

1011152It was then extracted with boiling benzene, crystallized, filtered206^boff, and recrystallized from acetonitrile.165165

uct was allowed to crystallize.

Acknowledgment.—The authors are grateful to Dr. T. Lloyd Fletcher, Chemistry Research Laboratory of the Department of Surgery, University of Washington, for valuable discussion, advice, and review of the manuscript, and to Dr. Harry B. Wood, Jr., of of the Cancer Chemotherapy National Service Center, National Institutes of Health, for the screening data.

The excess PBr_3 was then distilled under vacuum and the resulting orange paste was poured over ice. The suspension was

collected on a filter and dried under vacuum over P_2O_5 . The product was then extracted with three 250-ml portions of boiling toluene. The extracts were filtered and combined and the prod-

Method F. 1-(3-Chloro-*n*-propyl)-3-(4-tolyl)urea.--1-(3-Hydroxy-*n*-propyl)-3-(4-tolyl)urea (21 g, 0.10 mole) was added slowly to freshly distilled POCl₃ on a warm-water (60°) bath. The reaction mixture was then heated by use of a boiling-water bath for 1.5 hr. After cooling to room temperature, the mixture was poured over crushed ice with stirring. NH₄OH was slowly added with stirring until the pH was slightly above 7. The sympy material was cooled in an ice bath until it had solidified and was theor collected and dried under vacuum over P_2O_{5} .